
LudoNarrare: A Model for Verb Based Interactive Storytelling

By

Joshua Stark

APPROVED:

Kurt VanLehn___Director

Jon Wetzel__Second Committee Member

1

Executive Summary

Instead of providing the illusion of agency to a reader via a tree or network of

prewritten, branching paths, an interactive story should treat the reader as a player who

has meaningful influence on the story. An interactive story can accomplish this task by

giving the player a large toolset for expression in the plot. LudoNarrare, an engine for

interactive storytelling, puts “verbs” in this toolset. Verbs are contextual choices of action

given to agents in a story that result in narrative events.

This paper begins with an analysis and statement of the problem of creating

interactive stories. From here, various attempts to solve this problem, ranging from

commercial video games to academic research, are given a brief overview to give context

to what paths have already been forged. With the background set, the model of interactive

storytelling that the research behind LudoNarrare led to is exposed in detail. The section

exploring this model contains explanations on what storyworlds are and how they are

structured. It then discusses the way these storyworlds can be brought to life. The

exposition on the LudoNarrare model finally wraps up by considering the way

storyworlds created around this model can be designed. After the concepts of

LudoNarrare are explored in the abstract, the story of the engine’s research and

development and the specifics of its software implementation are given. With

LudoNarrare fully explained, the focus then turns to plans for evaluation of its quality in

terms of entertainment value, robustness, and performance. To conclude, possible further

paths of investigation for LudoNarrare and its model of interactive storytelling are

proposed to inspire those who wish to continue in the spirit of the project.

2

The Problem and Research Question

For the past forty-five years, game designers and authors have passionately

pursued the creation of interactive stories that could be mediated by a computer. The idea

of playing the role of a character in the unfolding drama of a story has a strong appeal.

However, even after many attempts, interactive storytelling has remained a difficult

dream to achieve with any amount of satisfaction. Solutions such as narrative media

between gameplay, branching structures, illusion of choice, and environmental

storytelling, while all providing interesting experiences, have failed to capture the true

essence of what an interactive story could be. Even today, current commercial interactive

storytelling solutions resort to prebaked plotlines which fail to give the player true,

satisfying agency and rich play. From the above, the following question arises: What

model can be used to better approach the dream of an interactive story?

Implementing this model on a computer presents a multilayered engineering

challenge. Conceptually, a balance between designer, computer, and player must be

struck. This maps to the creation of systems for interactive storytelling. The designer

needs a tool or language to build an individual interactive storyworld. The computer

needs an engine that uses many algorithms and artificial intelligences to maintain and

bring life to the interactive storyworld the designer created. And finally, the player needs

a way of interacting with the computer as it proceeds through the story. They need the

ability to act in the story and experience its progression. To make interactive storytelling

come to life, and thus be measureable, a further question must be put forth: What does a

system and toolset for creating interactive stories that follow a robust and satisfying

model look like? This question drives the research documented herein.

3

Literature Review

 At the current moment, there are more talented people than ever before working

away to try to solve the interactive storytelling problem. Many of them come from a

background of video game development. Others are creators of literature, theatre, music,

or film. Each offers up a unique lens through which to look for solutions. Even since I

began research in this subject around a year ago a large amount of interactive storytelling

works have been released. To mention every work and research project centered on

interactive storytelling up until today would be impossible. Therefore, this review will

cover only a sufficient selection of the highlights in both creations and research as well as

the body of vocabulary built to describe interactive storytelling both outside and inside

this paper.

 Perhaps the oldest form of interactive storytelling for computers is interactive

fiction. Interactive fiction, such as the genre’s most well-known title, Zork (1977),

provides the player with a completely text-based interface which they use to move

throughout an environment solving puzzles. These games parse typed commands from

players and return text describing the results of these actions. Interactive fiction can focus

on having the player explore the network of text describing the storyworld, having the

player solve complicated logic puzzles, or anything in-between. With modern tools like

Inform 7 and Twine, a community of authors have refined the process of creating these

types of works. The rich history of interactive fiction provides a lot of inspiration to draw

from, but its text-based nature precludes it from a mainstream audience interested in

visual storytelling and its focus on puzzles can make it less dramatic and plot driven.

4

Many of those who do work in interactive fiction, such as Emily Short, are using their

knowledge and experience to try to solve the interactive storytelling problem.

 At the same time interactive fiction came onto the scene, video games were

quickly gaining ground as the hot new entertainment medium. Most early games only

used story to have a premise that gave context to what the player was doing, such as

defending Earth from aliens or rescuing a princess from a villain’s castle, a practice still

common today. With influence from the early 90’s multimedia boom, games like Myst

(1993) started to mix in video between moments of gameplay to make the context of play

even more immersive. Role-playing games whose ancestry went back to Dungeons &

Dragons (an excellent example of interactive storytelling without a computer) used

branching story paths, dialog trees, cutscenes, and actions tied to growing character

statistics to create some of the richer story experiences be found in video games. Point-

and-click adventure games similar to interactive fiction but with visual interfaces also

emphasized story. Starting with Half-Life (1998), first-person shooters started to use

environmental storytelling and scripted events to tell stories. The independent game

movement that arose around the year 2007 started to use the same techniques of the past

with more personal and complicated subject matter outside the realm of strict fantasy and

sci-fi. Some of these games also experimented with storytelling through proceduralism,

or storytelling through the rules of the game itself. Jonathan Blow’s Braid (2008) and

Jason Rohrer’s Passage (2007) exemplify this philosophy. Recent independent endeavors

like 80 Days (2014) and Sunless Sea (2015) are starting to make some major strides

towards realizing interactive storytelling in a satisfying form.

5

 Chris Crawford, one of the first video game developers, has created some of the

more inspiring and fleshed out work on interactive storytelling. Having left the video

game industry dissatisfied with its direction, Crawford set out to solve the interactive

storytelling problem in the year 1992. In 2005, this work resulted in the book Chris

Crawford on Interactive Storytelling, an important work for laying out the design

philosophy, system models, and algorithms he had developed for over a decade.

Crawford emphasized the concepts of verb thinking and human interpersonal drama. In

his book, Crawford goes through the specifics of a personality model that can drive

artificial intelligence agents to behave in human and dramatic ways. He also offers a

thorough critique of previous attempts at interactive storytelling, in particular, those done

by video game designers. The technology in the book became Storytron (2009),

Crawford’s interactive storytelling engine. Unfortunately, this project turned out a failure

for Crawford. In postmortem writings, he seems to place particular emphasis on how the

failings of the tool for creating Storytron’s interactive stories led to difficulties for

potential creators. If it is too frustrating to author storyworlds, none will exist. Crawford

was particularly concerned with the ability of traditional authors with no technical skills

to create storyworlds for Storytron. Despite this, Storytron still featured a scripting

language called Sappho. Programmers found the language to be too limiting;

nonprogrammers found it to be too challenging. He also found that his system for

authoring verbs in Storytron was too complicated for most creators to handle. He

suggested that instead authors should just work with a handful of generic verbs.

Storytron’s interface, which made almost exclusive use of text, did not offer much

flexibility and would often lead to unengaging or awkward results. Crawford would later

6

suggest and use a system of iconic sentences rather than text sentences to get around

some of the issues text feedback presented. To this day, Crawford has continued to work

on the interactive storytelling problem through his current project Siboot.

 Outside commercial and hobbyist art, interactive storytelling has also appeared as

an interest in academic research for a long time. The Oz Project at Carnegie Mellon

University focused on utilizing artificial intelligence to drive the characters in an

interactive storyworld and make sure that an appropriate level of drama was maintained

throughout the story. One of the members on the Oz project, Michael Mateas, went on to

do additional interactive storytelling research with Andrew Stern, resulting in Façade

(2005). Façade is a highly influential interactive story that places the player in the role of

visiting a married couple for drinks where, as the night continues, drama between the

characters grows. The player interfaces with Façade through a first-person 3D

environment, recorded dialogue audio, and natural language processing. Being incredibly

ambitious, the results of Façade were mixed. Interfacing with agent characters through

natural language sounds like it would open up many possibilities for expression and

allow for comfortable social interactions. However, the limitations of the agents’

intelligence and the relatively small amount of mappings between sentences and actions

ended up creating an awkward experience when the players strayed too far from the

author’s intentions. Many actions also failed to feel meaningful, having little effect on the

overall story. Mateas and Stern spent three years producing Façade; developing even

small storyworlds with their architecture took too much development time. Just like the

problems Crawford’s Storytron encountered, Façade’s engine failed to take off into

something more because of an awkward interface and frustrating authoring tools. Since

7

the release of Façade, its technology and methods have not been duplicated or improved.

However, the papers written by Mateas and Stern about the development of Façade

provide a valuable resource for looking at the creation process of a particularly

complicated interactive storytelling system.

Before going any further, I will bring clarity to the meaning of some of the more

common and important words used in this paper. First, of course, is the term interactive

storytelling. By this I mean to speak of any story where the audience, at some point

during the story’s life, has a say in how the story progresses. When I speak of the ideal

interactive storytelling that my research tries to solve for, I mean an interactive story

where the interaction has depth and meaning; an interactive story which allows for rich

play and drama. By meaningful interaction, I intend to describe interactions where the

player has a good idea of what their actions will do, and generally speaking, the results of

their actions satisfy their hopes. Players are the humans who play with the storytelling

system, exploring it, subverting it, or embracing it. Verbs are the actions an agent chooses

from and then executes in the story. Plot and story are distinguished; plot is the sequence

of events while the story is the plot filtered through the telling, given style and meaning.

Storytelling is the act of transforming the plot into story. Storyworlds are the sets of rules,

entities, and verbs which are used to unfold an interactive story and are constant from

playthrough to playthrough. An interactive storytelling engine is a piece of software

which reads files defining storyworlds and animates them. Agents include both artificial

intelligence characters and the player. These terms lay the conceptual foundation for

understanding the contents and worldview of this paper.

8

Technical Approach

 The solution to interactive storytelling this research explores is not the only nor

the best solution. Throughout research the intention was to develop a general model for

interactive storytelling; the solution should avoid favoring one genre or type of story over

another. Conceptually, the process can be split between modeling the story and modeling

the interaction. Of course, the two eventually must meet and work together. The story is

modeled by a series of storyworld states in between which are transitional verbs. The

interaction is modeled by allowing any agent interacting with the storyworld to act in the

world through these verbs, having influence on which state is arrived to next. With this

model, the player and any artificial intelligence characters or objects are of equal status,

interacting with the storyworld in the same exact way. Thus, modeling any computer

agent in the interactive story is actually a separate but related problem to modeling the

interactive story itself and is, for the most part, beyond the scope of this research. The

resulting interactive story model serves as a framework for writing interactive stories and

needs to be designed as a tool. Not only should the model simply function, but it should

also be easy to work with and powerfully expressive for designers of interactive story.

All of these ideas together are the basis for an interactive storytelling solution.

To create an interactive story, a computational model of story needs to be

designed. The simplest understanding of story divides it into a series of logically and

dramatically ordered events that, taken as a string, create the plot. Now, of course, story

is not plot, but for the sake of simplicity avoid the issue of modeling the storytelling for

the moment. As a plot progresses, the world that the story started as changes. A city that

once stood is decimated by war. The dog who once was looking for a bone has found

9

one. Two people who used to be on opposite ends of the world have met and fallen in

love. A man becomes angry, and then he sets a building on fire. The world has a form

and that form changes. For the sake of the computer, this change should be thoroughly

discrete. This model, in an attempt to generalize, could assume that time always

progresses linearly in a story, which is often not the case. Flashbacks and nonlinear

telling of a plot exemplify creative moves in storytelling that, while they can still be

broken down into a series of events, the events they are made of have a more complex

temporal and causal relation to each other. A woman reminisces about her childhood.

Time travelers rush to resolve world ending paradoxes. The storyworld’s state still

transitions, but for drama rather than logic.

What does the state of a storyworld look like? The world can arbitrarily be

divided into entities and these entities can be differentiated by their properties. A

storyworld can consist solely of an island, a coconut tree, and a man. These are three

distinct entities, all of which have their own properties. The island could have the

property of being sandy; the coconut tree can have the property of being alive. The man

can have the properties of being named Lester, being a good climber, and being terribly

hungry. A storyworld transitions state by transitioning properties. A sum of property

transitions for different entities changes the nature of the storyworld. Lester could climb

the coconut tree and eat a coconut. By doing so, he loses the hunger property. While

video games model their virtual worlds almost exclusively in spatial terms, stories often

have very little concern for the mathematical specifics of space. Therefore, the exact

position of the coconut tree does not matter. This model can run into limitations,

however. Once the entities are divided, the divisions stand. By changing properties,

10

entities can often change into two entities or become part of another entity. While these

cases could be added to the storyworld state model, they would add complexity and

mostly, again, describe details which are fundamentally spatial or numerical, properties a

story does not often concern itself with.

Verbs change the storyworld’s state and move the story forward, animating it.

While the storyworld state’s entities and properties describe what the storyworld is, verbs

describe what can happen in a storyworld; they describe what the entities can do. Verbs

are the glue between states, the glue between the story and the agents playing in it, and

the glue between the story and the storytelling. Verbs have two ends which feedback into

each other; conditions and operators. The conditions look at the storyworld state and

determine if the verb is logically possible. If the verb is possible and is executed, the

operators determine just what kind of effect the verb is going to have on the storyworld’s

state. With the change in the storyworld, the conditions are then checked to see what new

verbs are possible. Conditions are if-statements that say whether or not the verb is a valid

way the story can progress at the given story state. If a woman has legs, she can run. If

the robot has a laser, it can shoot down a helicopter. If a monster is tied up in chains, it is

unable to move or attack anyone. Conditions keep a story logical. Instead of simulating

the mathematical specifics of physical law, conditions compress the patterns of reality (or

the reality of a fantasy world) into a more manageable form. Operators define how the

state changes when the verb occurs. They state which entities get or lose which

properties. Verbs are executed by entities tied to agents. The cat agent, who is tied to a

cat object in the world state, could choose to execute the verb “drink milk,” making the

cat object lose its thirsty property and giving the milk bowl the property of emptiness.

11

This model of verbs allows for the player and the artificial intelligences to

interface with the storyworld as equals. Every agent has a turn to act. All agents in the

story go through the same interaction cycle. First, they observe the state of the storyworld

and the events that have occurred in it. After doing this, they make a choice of one of the

possible verbs they can execute. This choice creates an event in the story which changes

the storyworld. The next agent then observes the recent event and the new storyworld,

going through the same cycle. This continues indefinitely until the story reaches a defined

ending. Sometimes an agent might reach a point where they cannot take any action. If

this becomes the case, a null “wait” verb needs to be available that lets the agent forfeit

their turn. This opens up an interesting limitation to this system. If the storyworld is able

to reach a state where every agent is incapable of action and they all have to wait, the

interaction cycle gets stuck in an infinite loop. Under this model, designers of

storyworlds would need to design around this limitation.

Events and verbs are different sides of the same coin. When an agent chooses to

execute a verb, they are choosing to take action. Depending on conditions in the

storyworld, that action could lead to one of any number of events tied to the verb. The

series of all the different agents’ actions can be viewed as a series of events, otherwise

known as a plot. All the possible plots an interactive story can have are to be found in all

the possible series of verbs. Verbs need to operate in sequence and not in parallel.

Parallel verbs create overlapping events which might contradict each other. A dry readout

of a list of verbs would be a very uninteresting way of telling a story. Storytelling works

because of execution. If execution was optional, reading a Wikipedia summary of story

would be just as entertaining as reading or watching the actual work. The barebones plot

12

reduction of a story can often times make a great story seem ridiculous or uninteresting.

Therefore, a system needs to exist which tells the computer how to embellish the telling

of the events a verb causes. While an advanced artificial intelligence with artistic

reasoning that tells the plot with style would be the dream solution, a more reasonable

method is the simple mapping of events to storytelling. Events could map to dynamic 3D

cutscenes, paragraphs of text, or the pages of a picture book. The player will choose an

action, an in return, get an interesting telling of what happens because of that choice. The

problem with this method is if an event is repeated, it unfolds in exactly the same way as

before. Heavy repetition of media in video games, for instance, is widely criticized

(namely, repeated audio dialogue). A partial solution is to give the designer the ability to

define how the telling of an event can be permutated based on the storyworld’s state.

This model that connects actions, events, and storytelling together is a way to join

the interaction to the plot and the plot to the storytelling. This creates a mutual bridge

between interaction and storytelling. The result, if the storyworld is well built, should be

interactive storytelling realized. Verbs are the key, fundamental element to making this

all come together. Actions in the storyworld are defined by verbs. Events in the

storyworld are defined by verbs. Storytelling in the storyworld is defined by verbs. The

storyworld’s state serves the verbs, determining where they appear. Designers of

storyworlds need to create interesting, effective verbs and then design the storyworld

state space to allow for a dramatic, logical flow of those verbs. By emphasizing verb

design, creators emphasize the importance of connecting interaction to storytelling.

13

Figure 1. Verbs and events bridge interaction and story.

These designers need tools to create storyworlds. A model for interactive

storytelling must be able to act as a framework for numerous interactive stories. To work

within this framework, tools are needed. The storyworld model of entities and verbs is a

strange mix of data definition and semi-procedural instructions. Designers need the

ability to state what entities exist and what properties those entities have. This can be

tricky, as the entities cannot only be designed with their current state in mind, but their

eventual permutations also need to be considered. Entities need to be assigned agents if

they represent characters or objects which act through verbs. Entity definition is data

definition. Creation of verbs, on the other hand, is a far more complex process. Verbs

need to be able to query the state of the storyworld thoroughly enough to check

conditions. A language for describing these queries needs to exist for the designer.

Operators of verbs also need a language that describes what they do to the storyworld

state. Once a verb is executed, it becomes an event that needs to be told to the player. A

14

method for determining what to show for this event needs to exist; most likely, this would

be a reference to some piece of media or set of instructions that, based on the

storyworld’s state, tell the system how to combine multiple pieces of media into a single

experience. Beyond entities and verbs, the designer needs to define what events might be

shown at the beginning of the story to set the stage as well as the points when the story

might end and what events happen during those endings. The most advanced parts of the

interactive story to design are the externally scripted artificial intelligences which act as

agents. They need to be designed for the system’s interface. Designers could share

general purpose artificial intelligences with each other, assisting creators who are not

programmers. This should suffice as the requirements for tools that allow for the

production of interactive storyworlds that follow this research’s model.

15

Details and Methods

The LudoNarrare engine implements the interactive storytelling model from this

research. Using the Unity game engine as an interface, LudoNarrare focuses on creating

interactive picture book experiences. The picture book genre was chosen for its relative

simplicity and its emphasis on visual storytelling, both of which I believe are important to

selling the interactive storytelling idea. Conceptual thinking fails to reveal many of the

finer problems that a real system will encounter. So while the conceptual musing above

lays a foundation for understanding the research, the true lessons are found in the real

manifestation of the system, beyond what foresight provides. The process of creating

LudoNarrare required a large amount of faith in the design since a large amount of

interconnecting parts had to come together for any meaningful results to happen. This

engine underwent a heavy process of evolution. Many features were cut; many features

had to be added. Ideas about the storyworld model required further fleshing out beyond

what was originally planned. Several tools for designing storyworlds where created and

thrown out. Once the engine reached a point that storyworlds were ready to be designed,

the research began to shift towards thinking about the principles that would lead to

interesting interactive stories. With the given time limitations, I could only begin to

explore the possibilities of what types of storyworlds could be created.

 The first few months of developing LudoNarrare where completely rooted in

design work and brainstorming. Reading the research of others interested in interactive

storytelling provided some helpful thoughts, but the most important sources of inspiration

were the already existing tools for interactive storytelling and the products created with

them. Whenever an interesting idea came to me, I made sure to add it to a bulleted list of

16

notes. From these notes came the LudoNarrare Design Bible, a twenty page design

document detailing a plan for the initial version. Many handwritten documents, mostly

flowcharts and graphical depictions of systems, also contributed to the growing

knowledge around what LudoNarrare was going to become. As part of another external

research project, I had to prepare a ten minute presentation regarding the architecture and

design of the engine. This task proved incredibly useful; challenging myself to explain

the system plainly to an audience forced me to clarify some otherwise fuzzy concepts.

Presenting the ideas made them vulnerable to an audience who could reveal issues which

I was blind to. With the design in place, the hard work programming the engine and

getting it running began.

 Development on LudoNarrare began with C# in Visual Studio. First, before an

engine that animated storyworlds could be created and tested, a method for creating and

storing storyworlds had to be devised. Originally, due to the large push in the interactive

storytelling community for tools that are easy for nonprogrammer authors to use, the plan

was to create a GUI toolkit that allowed intuitive defining of the storyworld’s entities and

verbs. A large amount of time was put into building this GUI tool; however, it quickly

became apparent that it would take too much time to finish and debug. An alternative was

sought after. Although I was initially not fond of the idea of writing the storyworlds in a

structured file format like XML, I had no other choice but to implement it.

Alongside building the GUI, I was writing the classes for the different

components of the storyworld data structure, figuring out how it would appear in memory

and what functionality it needed. The very first storyworld model featured entities

composed of a name, a set of attributes, and a set of relationships. Attributes where string

17

tags like “tall” or “blue”; an entity either had an attribute or it did not. Relationships were

named pointers to other entities; for example, Lester “loves” Julie. Entities also featured

three additional properties, obligations, goals, and behaviors, which were the original

solution to artificial intelligence agents. Obligations said that if an entity could do the

verb the obligation pointed to, they would. Goals said that if an entity had no obligations

and could do a verb whose operator matched the operator the goal described, it should.

Behaviors made entities without obligations or goals chose a verb based on the verb’s

odds. This system for controlling agents would survive several iterations of LudoNarrare.

Verbs originally consisted of a set of conditions, a set of operators, and a text

description that described the verb’s event. This would prove to be way too simple a

model from the start. The first element added to verbs were arguments, which allowed

entity references to be passed to the verb by the agent doing it in order to change the

nature of its operations. For instance, the “walk” verb needed an entity with the attribute

“place” that the agent would walk to. This argument system would prove to be a powerful

way to compress a large amount of verbs into one for both the designer and the player,

adding way more possibilities without the cost. Conditions checked named or argument

entities for attributes and relationships while operators added or removed attributes and

relationships from the given entities.

The first interface for LudoNarrare was completely text based, even though the

intention from the start was to eventually build a picture book interface in Unity. A

scrolling window of text descriptions of the events told the story to the player while drop

down combo boxes where used for the process of selecting verbs and verb arguments.

Each storyworld had a beginning piece of text which set the stage and several endings

18

which were defined by a set of conditions and story text. With the storyworld class

models, the storyworld XML parser, and the player interface built, the last task before

having a working interactive storytelling engine was to engineer the loop that breathed

life into the flow of events as conceived in Figure 1. The player would be given an initial

choice of verb. Then, all other agents were cycled through randomly, being asked to

make a move. The obligation, goal, and behavior agent model was used to determine if

they would. In order for a verb to be chosen, all possible verbs had to be enumerated.

This required functions for checking conditions and building a tree of all possible

versions of the verb based upon the arguments it could accept. Once a verb was chosen,

its results were displayed and its operators applied. This process would continue until the

scheduled check for an ending had been arrived to.

Figure 2. An early flowchart showing the story and interface loop.

To test this first version of the LudoNarrare engine, several tiny, trivial

storyworlds were written. One storyworld simply had the player and other agents moving

19

from room to room. Another had the player painting a room different colors. In one of the

storyworlds, the player could pick up items, use them, or put them down. All of these

very basic storyworlds were used to debug the many features that had been built up until

this point. Most of these features, in order to work, had to be rethought and rewritten.

Once these issues had seemed to be ironed out, work on a more substantial storyworld to

show off interactive storytelling in LudoNarrare began. This storyworld was called

Desert Delvers and it was supposed to tell the story of adventurers heading out into desert

mountains in search of gold. A demo that featured many elements of the test storyworlds

was built where the player and other agents could walk around a small town picking up

items, buying supplies, hurling insults, and punching each other. This storyworld began

to burst the engine at the seams, as more ugly glitches started to appear with the larger

possibility space. Problems around the believability of the agents also began to rise, as

their stochastic behaviors seemed to be very uninteresting. However, it did run. This was

a start, though perhaps a bit ambitious.

 After the text based version of LudoNarrare had reached enough of a functional

level, it was time to move it over to Unity. Since Unity used C# for its scripting, the

porting process offered no major issues. An interface for an interactive picture book was

to be made for Android tablet. Input would be both gestural and spoken. Since this

version of LudoNarrare was to be presented as a live demo, part of the focus was on

making the visual interface attractive. A large amount of work was put into a 3D model

for turning pages and a pleasant system for selecting verbs and arguments involving

colorful icons and selection arrows. Instead of just text for storytelling, each page

featured a series of sprites with a text overlay. This required the addition of a page class

20

which contained instructions for drawing each page instance. Every storyworld would

need to contain these page definitions for the beginning, verbs, and endings.

 With the first version of LudoNarrare, the inefficiency of XML for writing

storyworlds became more and more clear. JSON was considered as an alternative, but

ultimately, the XML parser was replaced with a custom parser. With a custom parser of

storyworld files came a custom language for writing storyworlds, a language called

LNScript. While LNScript took a while to implement, with a lexer and parser written

from scratch, it opened the door for new features to be added to the engine more

efficiently.

The second version of LudoNarrare added a plethora of new features to both

entities and verbs. Attributes became tags. Entities gained two new properties; integer

numbers and strings. These would allow for conditions and operations based around

mathematics and text. Entities also had a set of sprites which could be used to draw them

on a page. Verbs gained variables, preconditions, cases, and discriminators. Variables

allowed the verbs to work with lists of entities and check their properties as a whole.

Cases allowed a verb to have varying results depending on the storyworld’s state.

Punching a friend has different outcomes from punching an enemy. Both a good artist

and a bad artist can paint a painting. However, the resulting painting will vary based on

the properties of the creator. Preconditions were conditions universal to all cases, while

each case had its own conditions it had to check. Every case also had a set of operators

and a page describing the event that the case correlated with. Adding cases required a

reworking of the system that generated all possible verbs, since a verb would only be

possible if at least one of its cases could be executed. Finally, discriminators were added

21

to limit what verbs would be turned into pages in the storybook. If a discriminator

existed, only when its associated set of conditions were satisfied would the page

describing the verb appear. This allowed for the player to have limited knowledge of

what was happening in a story, unaware, for instance, of what agents outside their current

area were doing.

The storyworld that was created to demonstrate this new Unity version of

LudoNarrare focused around a Rock, Paper, Scissors tournament where the player

competed against a simple agent. The verb set was simple, consisting of being able to

play the game, giving praise or insults, and querying for details about the objects in the

story. This storyworld made heavy use of variables, cases, pages, strings, and integer

numbers. While this storyworld worked flawlessly, other attempts to make a storyworld

with this second version of the LudoNarrare engine often ended with a large amount of

technical problems. The parser was not completely correct, nor did the logic behind

conditions, operators, and agent behavior always work. The Rock, Paper, Scissors demo

storyworld played well with an audience, but it was extremely simple and was only

loosely an interactive story. The backend of LudoNarrare would have to be rewritten a

third time for the lingering problems to be resolved.

 To begin development on this third version, the LNScript language was heavy

modified to be more consistent and more powerful. Conditions could now be more

complicated expressions involving “and” and “or”. Numeric expressions gained added

complexity via the use of parenthesis to combine arithmetic operations. Cases could

render more pages and discriminators could completely hide certain verbs. A proper

22

grammar was written for the new LNScript so that a rewritten parser could be more easily

checked for issues bringing in storyworld data. That grammar appears in Figure 2 below.

<STORYWORLD> is starting non-terminal.

<STORYWORLD> ==> storyworld WORD <STORYWORLDBLOCK>

<STORYWORLDBLOCK>n==> { <DEFLIST> }

<DEFLIST> ==> <DEF> <DEFLIST> || <DEF>

<DEF> ==> <BEGINDEF> || <ENTITYDEFLIST> || <VERBDEFLIST> || <ENDDEFLIST>

<DRAWDEFLIST> ==> <DRAWDEF> <DRAWDEFLIST> || <DRAWDEF>

<DRAWDEF> ==> draw: <REFERENCEOP> image WORD, <EXPRESSION>, <EXPRESSION>; || <TEXTDEF>

<TEXTDEF> ==> text: STRING;

<BEGINDEF> ==> beginning { <PAGEDEFLIST> }

<PAGEDEFLIST> ==> <PAGEDEF> <PAGEDEFLIST> || <PAGEDEF>

<PAGEDEF> ==> page WORD { <DRAWDEFLIST> }

<ENTITYDEFLIST> ==> <ENTITYDEF> <ENTITYDEFLIST> || <ENTITYDEF>

<ENTITYDEF> ==> entity WORD { <ATTRIBUTELIST> }

<ATTRIBUTELIST> ==> <ATTRIBUTE> <ATTRIBUTELIST> || <ATTRIBUTE>

<ATTRIBUTE> ==> <AGENTDEF> || <ICONDEF> || <TAGATTR> || <RELATEATTR> || <STRINGATTR> ||
<NUMBERATTR> || <IMAGEATTR>

<AGENTDEF> ==> agent: WORD;

<ICONDEF> ==> icon: STRING, <EXPRESSION>, <EXPRESSION>, <EXPRESSION>;

<TAGLIST> ==> <TAGATTR> <TAGLIST> || EMPTY

<TAGATTR> ==> tag: WORD;

<RELATEATTR> ==> relate: WORD, WORD;

<STRINGATTR> ==> string: WORD, STRING;

<NUMBERATTR> ==> num: WORD, NUMBER;

<IMAGEATTR> ==> image: WORD, WORD;

<EXPRESSION> ==> NUMBER || (<EXPRESSION> <NUMOPERATOR> <EXPRESSION>) || <REFERENCEOP> WORD

<NUMOPERATOR> ==> + || - || * || /

<VERBDEFLIST> ==> <VERBDEF> <VERBDEFLIST> || <VERBDEF>

<VERBDEF> ==> verb WORD { <ICONDEF> <TAGLIST> <VARIABLELIST> <ARGUMENTLIST>
<PRECONDITIONLIST> <CASELIST> <DISCRIMINATORLIST> }

<VARIABLELIST> ==> <VARIABLE> <VARIABLELIST> || EMPTY

<VARIABLE> ==> variable VARIABLE { <CONDITIONLIST> }

<ARGUMENTLIST> ==> <ARGUMENT> <ARGUMENTLIST> || EMPTY

<ARGUMENT> ==> argument VARIABLE { <TEXTDEF> <CONDITIONLIST> }

23

<PRECONDITIONLIST> ==> <PRECONDITION> <PRECONDITIONLIST> || EMPTY

<PRECONDITION> ==> preconditions { <CONDITIONLIST> }

<CASELIST> ==> <CASE> <CASELIST> || <CASE>

<CASE> ==> case WORD { <CONDITIONLIST> <OPERATORLIST> <PAGEDEFLIST> }

<DISCRIMINATORLIST> ==> <DISCRIMINATOR> <DISCRIMINATORLIST> || EMPTY

<DISCRIMINATOR> ==> discriminator never; || discriminator WORD { <CONDITIONLIST> }

<CONDITIONLIST> ==> <CONDITION> <CONDITIONLIST> || EMPTY

<CONDITION> ==> where: <CONDITIONDEF>;

<CONDITIONDEF> ==> ATOMICCONDITION || not <CONDITIONDEF> || (<CONDITIONDEF> and
<CONDITIONDEF>) || (<CONDITIONDEF> or <CONDITIONDEF>)

<ATOMICCONDITION> ==> <REFERENCE> has tag WORD || <REFERENCE> has relate WORD ||
<REFERENCE> has string WORD || <REFERENCE> has num WORD

<ATOMICCONDITION> ==> <REFERENCE> WORD <REFERENCE>

<ATOMICCONDITION> ==> <REFERENCE> WORD <COMPARISON> <EXPRESSION>

<ATOMICCONDITION> ==> <REFERENCE> WORD matches STRING || <REFERENCE> WORD matches
<REFERENCE> WORD

<ATOMICCONDITION> ==> VARIABLE empty || VARIABLE same VARIABLE

<COMPARISON> ==> = || != || < || > || <= || >=

<REFERENCE> ==> WORD || VARIABLE || one VARIABLE || all VARIABLE

<REFERENCEOP> ==> WORD || VARIABLE

<OPERATORLIST> ==> <OPERATOR> <OPERATORLIST> || EMPTY

<OPERATOR> ==> do: <OPERATORDEF>; || do: <AGENTOPERATORDEF>;

<AGENTOPERATORDEF> ==> for WORD <OPERATORDEF>

<OPERATORDEF> ==> <REFERENCEOP> add tag WORD || <REFERENCEOP> add relate WORD,
<REFERENCEOP> || <REFERENCEOP> add string WORD, STRING || <REFERENCEOP> add num WORD,
<EXPRESSION>

<OPERATORDEF> ==> <REFERENCEOP> change image WORD to WORD

<OPERATORDEF> ==> <REFERENCEOP> remove tag WORD || <REFERENCEOP> remove relate WORD,
<REFERENCEOP> || <REFERENCEOP> remove string WORD || <REFERENCEOP> remove num WORD

<ENDDEFLIST> ==> <ENDDEF> <ENDDEFLIST> || <ENDDEF>

<ENDDEF> ==> ending WORD { <CONDITIONLIST> <PAGEDEFLIST> }

Figure 3. LNScript Grammar Definition

Alongside a new grammar and parser for LNScript, LudoNarrare needed a total rewrite

of conditions and operators. Instead of handling these procedures in the engine loop, the

24

functions where moved to the condition and operators classes. The refactoring of these

classes proved highly successful with the code being cut to half the size and losing most

of its original bugs.

 The final change in the third version of LudoNarrare was a total rethinking of

how agents were to be implemented. The obligation, goal, and behavior system, while

simple in concept, showed itself to, in practice, be confusing to design for and it did not

produce many interesting results. Keeping with the philosophy of placing the player and

the other agents on as equal standing as possible, the new system would make the agents’

thinking entirely separate from LudoNarrare. The engine would give outside, custom

scripted agents the list of possible verbs, the story so far, and the state of the storyworld

and look for a decision in response, much like how it does for the player. The algorithm

for decision making could be anything; it could be a traditional artificial intelligence, a

mapping of decisions from a database of prebaked performances, or simply a random

number generator. These and other possibilities could open doors for far more

complicated and interesting models of personality, memory, planning, and learning than

the old system provided. The modifications to the general storytelling loop these changes

required brought an additional feature: the ability for an entirely agent controlled

storyworld. This means an agent can be put in control of the player’s character. All the

agents together would then use the model for interactive storytelling to procedurally

generate a story based on the storyworld’s rules. The player could also then be placed in

control of entities which were previously only controllable by agents. Unfortunately, time

did not permit for much experimentation with these external decision making agents.

25

Further investigations could explore the wide array of systems that could be

plugged in as agents. The current storyworlds created with LudoNarrare use agents with

basic random behavior and support for probabilistic decisions regarding which arguments

to choose. Furthermore, the agents may be forced to make a specific choice of verb given

a certain set of circumstances. While this system is about as uninteresting and barebones

a solution as possible, it still provides reasonably believable and entertaining behavior

given a small storyworld with well-designed verbs that work around the limitations of the

agents that choose them.

 To display the heightened stability and extra features of the third implementation

of LudoNarrare, a storyworld loosely based on the Three Little Pigs was designed. In it

the player takes on the role of the wolf trying to eat the three pigs, all of whom are

computer controlled agents. It follows the narrative flow of the children’s story, with the

pigs building homes of different materials which are then destroyed by the wolf. The pigs

and the wolf go back and forth with each other in their conflict; one ending has the wolf

eating all the pigs while another has all the pigs surviving the wolf’s attempts to get them.

A large amount of the variation in the story comes from the interactions between the

wolf’s tools and the pigs’ homes. For example, the wolf can destroy a house made of

brick with a sledgehammer, but cannot destroy a house made of iron with it. This

storyworld features many verbs which would break the previous version of the engine.

The importance of stability when experimenting with storyworld design cannot be

understated; a broken engine means limited features and unpredictable behavior. The

Three Little Pigs storyworld, while still not of any true complexity, does a better job of

26

showing off the type of experience interactive storytelling can create compared to

previous demos.

Even though most of the research and development time was spent getting the

LudoNarrare engine into a working state, a small amount of time was used to design

storyworlds for this system and learn a bit about their nature. These are some of the

design heuristics discovered for creating interactive stories with LudoNarrare. First,

minimizing the entities, properties, and verbs used for only very specific purposes

maximizes the dynamic interactions that can happen in a storyworld. For example,

instead of having verbs called “burn person” and “burn wood,” simply have a verb titled

“burn” that can then apply the “burning” attribute to any burnable object it is used on.

Second, it could often be the case that the player or another agent has multiple verbs at

their disposal which can accomplish their goals. To make this situation more interesting,

these verbs should have differing side effects. The agent then has to choose which side

effects they want to live with, or even, if they want to live with any of the side effects at

all. Finally, the more verbs that can be compressed via arguments the better. This creates

more options, makes the job of writing verbs easier for the designer, makes the player

feel more control over their actions, and decreases the clumsiness of the verb selection

interface. If LudoNarrare has a future, most of it lies in the creation of interesting

storyworlds that explore the opportunities of interactive storytelling. For interactive

storytelling systems like LudoNarrare to reach a mainstream audience, they need high

quality and well-designed storyworlds that capture players’ imaginations.

27

Evaluation

 LudoNarrare has not yet been evaluated formally, but a plan for evaluation can be

laid out. The interactive storytelling engine consists of several aspects, all reaching for

related but distinct goals. The first aspect to evaluate is whether or not LudoNarrare does

interactive storytelling at all. Does LudoNarrare distinguish itself from video games,

virtual worlds, and other interactive forms to specifically create narrative experiences?

LNScript and the pipeline for building storyworlds in Unity are the tools creators use to

build content for LudoNarrare. The efficiency and power of these tools needs to be tested

so that problems preventing designers from writing storyworlds can be reduced,

increasing both the amount and quality of interactive stories available. The LudoNarrare

engine itself can be tested in a couple of ways. First, the quality of the interactive

storytelling it provides should be evaluated using combinatorial analysis of how many

meaningful possibilities it can create for storyworlds. Second, the technical limitations of

the engine need to be explored to know just how complex storyworlds can become before

they start taking up too much memory or processing time. This knowledge not only

determines what devices are capable of using LudoNarrare for interactive storytelling,

but if the engine can run sufficiently large enough storyworlds at all. Creators would have

little interest in small storyworlds similar in size to the demos created during the

development process. The final test of whether or not LudoNarrare can find some

success solving the interactive storytelling problem is to put storyworlds running on the

engine in the hands of players and observe their experiences and impressions. These are

the methods I propose for evaluating the LudoNarrare project to determine its quality and

worth.

28

LudoNarrare’s entire purpose for existing is to create and bring to life interactive

stories. If it does not create interactive stories, but rather something else, it has fallen

short of its aim. Clearly, as discussed earlier, a story can be understood as a series of

events well told. LudoNarrare meaningfully strings together verbs which are then turned

into events and then formed into well told picture book pages. Players have some say as

to which verbs are strung together, adding interactivity. Technically, under these

definitions, LudoNarrare creates interactive stories. But storytelling does not stop at

describing events well. It also entails the ordering of events to also be well told. Most

stories build to a climax, give exposition in the right spots, and create clear arcs of plot

and character. In LudoNarrare, there exists no mechanisms for such things. The same

logic used to claim LudoNarrare creates interactive stories could be used to also claim

that all video games and virtual worlds create interactive stories. In fact, LudoNarrare

can be used to create games (the Rock, Paper, Scissors storyworld is proof of this). Does

this unravel the entire endeavor?

No. Interactive stories, by their very nature, are going to have different structures

and storytelling methods from traditional, linear stories. The existing body of work

already shows that interactive stories tend to be longer than their linear counterparts.

They also show that interactive stories follow different rhythms than traditional stories.

These known differences and those yet to be discovered are fantastic; they open up

entirely new experiences and ways of thinking that would never come from linear

storytelling. Earlier thoughts about what LudoNarrare was going to be included ideas of

“story grammars” that helped guide the types of verbs that could be executed at certain

moments of the story. Verbs early on in a story, for instance, might be limited to the less

29

dramatic, while as the story progressed, only dramatic, climatic verbs could be used.

Furthermore, verbs executed earlier in the story could make a note requiring for a

particular type of follow-up verb to occur before the story’s end. These concepts did not

gain ground because outside a storyworld with a vast amount of verbs, they would

severely constrain what the agents, particularly the player, could do at any given moment.

The player will always need to take some responsibility for the quality of the drama in a

story that is interactive, especially if they also desire a satisfying amount of agency.

Despite this, a form of drama management which guides the computer agents or provides

a structure compatible with interactive storytelling could still be valuable. LudoNarrare

lacks this; it has the challenge of crafting storyworlds that are inherently dramatic due

simply to the logic which connects the possible events and the agents’ behavior.

While LudoNarrare is a close cousin of video games and virtual worlds, they are

not the exact same. Most video games and virtual worlds are concerned with spatial

understandings of environment and it shows in the actions they make available (walking,

looking, jumping, and shooting are all geometric in nature). LudoNarrare does away with

thinking this way; dramatic stories have little interest in spatial details. As said

previously, by certain definitions games and virtual worlds do tell stories, but they often

are not concerned with this. They are trying to accomplish other goals; their creation of

stories is accidental. LudoNarrare was designed to concentrate designers on intentionally

creating stories. If these stories are good as stories, then the goal has been achieved.

Without storyworlds, LudoNarrare is barren. And without good tools, storyworlds

will be hard to come by. Therefore, LudoNarrare is useless if the toolset it provides

makes it difficult for creators to craft storyworlds. Designers will primarily use LNScript

30

for storyworld creation. Like other programming languages, LNScript should be

expressive, readable, and writable. To test these qualities, analysis could be done on a

sample of designers using LNScript to write storyworlds. The average length of time

designers need to write an entity, a verb, or an entire storyworld and the average amount

of times designers need to debug a problem could serve as possible quantitative

measurements of LNScript’s quality. Listening to the feedback and intuitions of designers

who already understand another form of interactive storytelling could reveal qualitative

data on whether or not LNScript allows for easy expression of ideas. If the majority of

designers give up on LNScript due to it being unwieldy, there is a problem. Beyond

LNScript, the Unity game engine gives designers of storyworlds a pipeline to load in

graphic resources and write artificial intelligence agents. While adding graphic resources

is trivial and needs little to no validation, the system for writing agents does need

validation. The agent system succeeds if one agent model can be applied to many

different entities once it has been written. Quantitatively, this goal can be checked by

counting the amount of times each agent gets reused by the designer. If qualitative reports

show that designers are struggling to write agents that interact with the LNScript

storyworld, there is a problem with the interface between the two. LudoNarrare depends

on both LNScript and the Unity resource pipeline to deliver designers an effective and

comfortable environment for the creation of interactive storyworlds.

Combinatorial analysis could be a potential quantitative tool for learning how

dynamic individual storyworlds are and what variety of possibilities they can offer. A

large space of possibilities points to the emergent quality of an interactive storytelling

system for creating situations that surprise even the creator, an ideal goal. An interactive

31

story with ten different routes does not compare to an interactive story with 1,000,000

possible routes. Enumerating the paths through brute force would be the easiest

implementation. This type of analysis would be able to determine the space of possibility

for individual storyworlds and speak to their own quality. However, a large average

number of story paths for all created storyworlds would bode well for LudoNarrare itself

and its ability to create stories that are highly interactive. A possible issue using

combinatorial analysis on storyworlds arises when possible story routes are infinite,

which could very well be the case. This issue can be solved by limiting the depth of the

enumeration to a certain point; although the maximum number of paths is infinite, all

meaningful paths can be captured after a certain depth into the story. The possibility of

easily creating a storyworld with infinite paths in LudoNarrare shows some limitations of

considering high path counts as a metric for quality interaction. For more nuance,

consideration of event variety and the qualitative measurement of a player’s sense of

agency are also needed.

What does LudoNarrare have if computers cannot run it? Both space and time

complexity need to be considered to know the hardware options the engine has available.

Space complexity would be the simpler of the two to analyze. LudoNarrare needs to

store all the data for the storyworld model as well as duplicate storage of every verb

during the verb decision process. Beyond this, it keeps in memory all the previously

rendered pages in the storybook and the graphical sprites used to render entities. It would

be unlikely for the data beyond the images to take up a modern memory space. However,

to confirm that it does not would simply involve measuring the average memory usage of

a wide sampling of storyworlds. Since a storyworld’s information can grow with entities

32

gaining properties, the measurements should be done on multiple storyworlds to show

how they grow and shrink over the lifetime of their different paths. If the trend shows that

the size of entities grows too large, there may be problem.

Checking the bounds of LudoNarrare’s time complexity requires more thought.

Almost all processing occurs between the player choosing a verb to execute and the

storybook showing the results of that action. Since the interface is turn based,

performance is less of an issue than it normally would be for an interactive system.

However, even though a ten second or even one minute delay could be acceptable,

players should not have to wait twenty minutes or an hour for the results to come in.

While there will always be a storyworld sufficiently complex enough to slow processing

to a halt on any hardware, the loose limits of what the engine can and cannot do can still

be analyzed. Say a massive storyworld that took two years of work to create consisted of

3,000 entities, 1,000 verbs, and 100 agents. A simple time complexity can be found by

multiplying the number of agents by the total number of verbs, since each step of the

story all agents need to consider the verbs they can choose from. This needs to be

multiplied by the time complexity of choosing a verb. The equation in Figure 3 below can

be used to get a rough, informal estimate of LudoNarrare’s story loop time complexity.

𝐴𝑔𝑒𝑛𝑡 ∗ 𝑉𝑒𝑟𝑏𝑠 ∗ (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ∗ 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ∗ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 ∗ 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ∗ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡

+ 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∗ ∑ 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠 𝑖 ∗ 𝐶𝑎𝑠𝑒𝑠 ∗ 𝐶𝑎𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

4

𝑖=1

)

Figure 4. Equation for estimating the time to render the next part of a story

With low estimates of the other values (assuming four variables, four arguments, five

argument values, four cases, and six conditions for each, all numbers taken from my

experience building storyworlds) a storyworld of this size would take on average

33

2.34*1010 or 23 billion operations. While it would be too simplistic to definitively

compare this number to the amount of operations a modern CPU can perform, my

intuition says that a storyworld this large is pushing the limits of high end hardware, but

still running without pausing to process. Since each iteration of determining whether or

not verbs are available to an agent are mutually exclusive processes, CPUs that support

multithreading would be at an advantage if LudoNarrare was modified to support them.

All of this is an informal estimate and does not consider all the details, especially the

decision process of potentially complicated artificial intelligences driving the agents.

More thorough, formal complexity analysis with properly sampled averages would be

needed to better understand the engine’s limits. While LudoNarrare might have no issue

with memory space, large storyworlds can potentially push even high end consumer

hardware to its limits.

The final test of LudoNarrare’s validity as a solution to the interactive storytelling

design problem is incredibly simple; put the tools in the hands of creators and the

marketplace to evaluate the engine’s ability to run interactive stories that are compelling

to the population as a whole. If a community of designers forms around the LudoNarrare

toolkit and develops a prolific selection of engaging, unique storyworlds that capture

their audience’s imaginations, the system’s success proves itself in practice. Furthermore,

if commercial interactive stories can be produced with LudoNarrare and sell enough to

support small businesses, economics vindicates the concept and technology. I do not

believe any of this will happen, but perhaps similar engines that build upon the ideas

behind LudoNarrare succeed someday in the future. If LudoNarrare finds no success on

its own but inspires a success, it will have still found validation, albeit indirectly.

34

Conclusion

Interactive storytelling presents a heavy challenge; the concept, while

comprehensible, has not yet been fully realized. Even after years of work, some of the

best designers in interactive entertainment have still not created an interactive story that

truly satisfies the spirit of the endeavor. LudoNarrare implements a possible solution to

this interactive storytelling problem. It uses a model of interactive stories constructed of a

storyworld state that mutates via verbs. These verbs are chosen by the agents interacting

with the story; in turn, the verbs are turned into events which are used to tell the story as

it flows along. Storyworlds that utilize this model can be written for LudoNarrare using

the LNScript language. The LudoNarrare engine itself then reads these storyworlds and

animates them, bringing them to life. Agents, including the player, are then able to

interact with the active story. The quality of the interactive stories that can be created

with this system has yet to be formally evaluated. Proof of whether or not LudoNarrare

succeeds in any way lies with the storyworlds that will be created with it. If the system

proves to be capable of running a compelling interactive story experience, it has found

some success. LudoNarrare could serve as a step forward for interactive storytelling

philosophically, implementing some key new concepts for the very first time that, once

refined by further technology, could be part of the solution to fully capturing the

interactive storytelling dream.

How could the LudoNarrare project be expanded from here? Larger, more

interesting storyworlds could be made to better sell the idea of interactive storytelling to

potential investors who could speed up the process of solving the system’s design issues.

More interesting, complicated artificial intelligence agents could be created to add more

35

personality to storyworlds. Research could focus on how these agents learn and store

information about what they experience in the storyworld. More complicated agents that

pursue multilevel goals could also be implemented. The challenge is to not make agents

who reason really well, a computationally heavy task, but to make agents that simulate

humans dramatically. Where can future technology similar to LudoNarrare improve upon

and expand its ideas? With the philosophy of keeping the player and the other agents on

relatively equal footing, it would be quite easy to implement multiplayer interactive

storytelling using the LudoNarrare model. Instead of one human player and many

artificial intelligences, a storyworld could be a mix of many human players and many

artificial intelligences. Further research can be done on improving the system that turns

events into storytelling. For example, a potential storyteller agent could be designed to

add more dramatic flair to how the story is presented. LNScript and the Unity

implementation of LudoNarrare present a storyworld creation toolkit that is not the most

user friendly or immediately understandable. Better visual tools for creating storyworlds

could be experimented with so that more designers would feel invited to contribute to the

growing knowledge on interactive storytelling. Debug tools that allow the designer to

find issues with their verbs’ logic or gain statistical information about queried

enumerations on story paths could also be developed to allow for the quality of created

storyworlds to improve. Finally, LudoNarrare’s interactive storytelling model could be

applied to mediums outside of picture books. Imagine the integration of interactive

storytelling with music, film, theater, or traditional video games. The possibilities are

endless and exciting. LudoNarrare provides inspiration for a potential upcoming age of

interactive storytelling.

